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1. INTRODUCTION AND PRELIMINARIES

The Banach-Piccard-Caccioppoli contraction principle plays an impor-
tant role in several branches of mathematics and applied mathematics. For
this reason, it has been extended in many directions (see e.g. [10] and refer-
ences therein). One of such directions is to consider the cone metric spaces
instead of metric spaces (see e.g. [1, 2, 6] for more details in this topic).

Recently, W.S. Du used in [4] the scalarization function ξe and inves-
tigated the equivalence of vectorial versions of fixed point theorems in cone
metric spaces and scalar versions of fixed point theorems in metric spaces. He
showed that if (X, ρ) is a TV S− cone metric space then dρ = ξe ◦ ρ is a metric
on X. Thus, many of the fixed point results in cone metric spaces for maps
satisfying contractive linear conditions can be considered as the corollaries of
corresponding theorems in metric spaces. In this paper, we shall prove that
some contractive conditions of nonlinear type on cone metric spaces can be
reduced to nonlinear contractive conditions on metric spaces.

For the convenience of the reader we recall some definitions and facts (see
[4]). Let Y be a topological vector space (for short TVS) with its zero vector θ.

Definition 1.1 ([4, 6]). A subset K of Y is called a cone whenever the
following three assertions hold:

(i) K is closed, nonempty and K 6= {θ};
(ii) a, b ∈ R, a, b ≥ 0 and x, y ∈ K imply ax+ by ∈ K;
(iii) K ∩ −K = {θ}.

If, further, intK 6= ∅ we say that K is solid cone.
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Let K ⊂ Y be a cone. We define the partial ordering �K with respect
to K by x �K y or, more simple, x � y, if and only if y − x ∈ K. We shall
write x � y provided that y − x ∈ intK (interior of K). So, x �/ y means
y − x /∈ intK.

Remark 1.1. (1) If b�/ a and b � c then c�/ a.
(2) If b� a and b�/ c, then a�/ c.
Proof. (1) If we suppose c� a, then a− c ∈ intK. It follows

a− b = c− b+ a− c ⊂ K + intK ⊂ intK

which contradicts b�/ a.
(2) In the same way, if a� c, then c− a ∈ intK. So,

c− b = c− a+ a− b ∈ intK + intK ⊂ intK,

contradicting the hypothesis b�/ c. �
In the sequel, we suppose that Y is a locally convex Hausdorff space with

null vector θ and S its family of seminorms. We consider a solid cone K in Y
and e ∈ intK.

In [4], W.S. Du defines the TVS-cone metric spaces and, based upon
the idea of Huang and Zhang [6], the convergence and completeness in the
respective spaces as follows:

Definition 1.2. Let X be a nonempty set. Suppose that a map ρ : X ×
X → Y satisfies:
(cm1) θ � ρ(x, y) for all x, y ∈ X and ρ(x, y) = θ if and only if x = y;
(cm2) ρ(x, y) = ρ(y, x), for all x, y ∈ X ;
(cm3) ρ(x, y) � ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

Then ρ is called a TVS-cone metric on X and (X, ρ) is called a TVS-cone
metric space.

Definition 1.3. Let (X, ρ) be a TVS-cone metric space, x ∈ X and (xn)n
a sequence in X. We say that:

(a) (xn)n TVS-cone converges to x whenever, for every c ∈ Y with θ � c,
there is a natural number N such that ρ(xn, x)� c, for all n ≥ N ;

(b) (xn)n is a TVS-cone Cauchy sequence whenever, for every c ∈ Y with
θ � c, there is a natural number N such that ρ(xm, xn)� c, for all m,n ≥ N ;

(c) (X, ρ) is TVS-cone complete if every TVS-cone Cauchy sequence in X
is TVS-cone convergent.

The following nonlinear scalarization function is of fundamental impor-
tance for our survey. The original version is due to Gerstewitz1 (1983). In

1Gerstewitz, Chr. (Tammer), Nichtkonvexe dualitat in der vektaroptimierung, Wissen-
schaftliche Zeitschrift Leuna-merseburg 25 (1983), 357–364
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order to define such a function we need first the following lemmas:

Lemma 1.1 ([5], L. 2.1). One has Y =
⋃
r>0

(r · e− intK).

Lemma 1.2 ([3], Pr. 1.41). For every y ∈ Y , the set {r ∈ R, r ·e−y ∈ K}
is bounded from below and a closed subset in R.

Let us define a scalarization function ξe : Y → R given by

(1.1) ξe(y) = inf{r ∈ R; r · e− y ∈ K}.

The previous lemmas assure that ξ is well defined and, further, we can
write

ξe(y) = min{r ∈ R; r · e− y ∈ K}.
The main properties of ξe which are often used in the sequel are revealed

in the following lemma.

Lemma 1.3 ([3]). For each r ∈ R and y ∈ Y , the following statements
hold:

(i) ξe(y) ≥ r if and only if y /∈ r · e− intK;
(ii) ξe(y) < r if and only if y ∈ r · e− intK;
(iii) ξe(·) is positively homogeneous and continuous on Y;
(iv) if y2 ∈ y1 +K then ξe(y1) ≤ ξe(y2);
(v) 2 if y2 ∈ y1 + intK then ξe(y1) < ξe(y2) that is ξe is strictly monotone;
(vi) ξe(r · e) = r for all r ∈ R, particularly ξe(θ) = 0;
(vii) ξe(y1 + y2) ≤ ξe(y1) + ξe(y2), for all y1, y2 ∈ Y ;

(viii) 3 if θ � u� c for each c ∈ intK, then u = θ.
(ix) 4 ξe(y) = r ⇔ y ∈ r · e− ∂K, where ∂K means the frontier of the set K.

The following lemma is crucial for our purpose.

Lemma 1.4 ([4], Th. 2.1). Let us consider a TVS-metric space (X, ρ).
Then the map dρ : X ×X → [0,∞) defined by dρ := ξe ◦ ρ is a metric on X.

Proof. We proceed to verify the axioms of metric. Thus, by Definition
1.2(cm1), (cm2) and Lemma 1.3, one has

dρ(x, y) = ξe
(
ρ(x, y)

)
≥ 0 and dρ(x, y) = dρ(y, x),

for all x, y ∈ X.

If x = y, then, by (cm1), dρ(x, y) = ξe(θ) = 0. Conversely, dρ(x, y) = 0
implies, by taking r = 0 in Lemma 1.3(ix), ρ(x, y) ∈ K ∩−K = {θ}, so x = y.

2see [3] Proposition 1.55
3see [9] Remark 1.3(4)
4see [3] Proposition 1.43(iii)
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The triangle inequality follows using again Lemma 1.3. We have

dρ(x, y) = ξe
(
ρ(x, y)

)
≤ ξe

(
ρ(x, z) + ρ(z, y)

)
≤ ξe

(
ρ(x, z)

)
+ ξe

(
ρ(z, y)

)
= dρ(x, z) + dρ(z, y), ∀x, y, z ∈ X. �

Theorem 1.1 ([4], Th. 2.2). The metric space (X,dρ) is complete pro-
vided that (X, ρ) is TVS-cone complete.

2. MAIN RESULTS

We work within the context of the previous section.

Definition 2.1. A map ϕ : K → K is called a vector comparison operator
if the following assertions are satisfied:
(c1) k1 � k2 implies ϕ(k1) � ϕ(k2);
(c2) ϕ(r · e)� r · e for each r > 0;
(c3) for every t0 > 0 and any ε > 0, there is δ > 0 such that

ϕ(t · e)− ϕ(t0 · e)� ε · e, ∀ t ∈ (t0, t0 + δ).

Let us consider the following map ψ : R+ → R+ given by

(2.1) ψ(t) = ξe(ϕ(t · e)),

where ϕ : K → K. Notice that, since θ � ϕ(u), for any u ∈ K, by using
Lemma 1.3 (iv), (vi), it follows that ψ(t) = ξe

(
ϕ(t · e)

)
≥ ξe(θ) = 0, conse-

quently ψ is well defined.

Proposition 2.1. Whenever ϕ satisfies (c2) from Definition 2.1, the
mapping ψ defined in (2.1) satisfies the following properties:

(i) ψ(t) < t for all t > 0;
(ii) is right continuous at t = 0.

Proof. (i) Let be t > 0. Since ξe is strictly monotone and t · e ∈ intK for
each t > 0, we deduce, using (c2)

ψ(t) = ξe
(
ϕ(t · e)

)
< ξe(t · e) = t.

(ii) We need to show that lim
t→0
t>0

ψ(t) = 0. We suppose by reductio ad

absurdum that there exist ε0 > 0 and a sequence of real numbers tn ↘ 0 such
that ψ(tn) = ξe(ϕ(tn · e)) ≥ ε0. So, by Lemma 1.3(i), one has ϕ(tn · e)�/ ε0 · e.
On the other hand ϕ(tn · e)� tn · e, for any n. Therefore, via Remark 1.1, we
get tn · e�/ ε0 · e. However, tn → 0 implies ε0 − tn > 0 for any n greatest than
some n0 ≥ 1. So, (ε0 − tn) · e ∈ intK, meaning that tn · e � ε0 · e. This is a
contradiction. �
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Proposition 2.2. Assume that ϕ satisfies (c1), (c2) from Definition 2.1.
Then ϕ(θ) = θ.

Proof. Firstly, we observe that, for some arbitrary c ∈ intK, there are
δ1 > 0 and a seminorm s0 ∈ S such that c + {x : s0(x) < δ1} ⊂ intK, hence
c− x ∈ intK, for any x with s0(x) < δ1. Thus, one has

(2.2) x ∈ Y, s0(x) < δ1 ⇒ x� c.

Since lim
ε→0

s0(ε · e) = 0, one can find η > 0 such that s0(ε · e) < δ1, so,

by (2.2),

(2.3) ε · e� c, ∀ ε ∈ (0, η).

Next, for some ε0 ∈ (0, η), from the right continuity of ψ (Proposition 2.1),
it follows that there is δ2 > 0, such that ψ(t) < ε0, for all t ∈ (0, δ2). Hence,
ξe
(
ϕ(t · e)

)
< ε0, that is, according to Lemma 1.3 (ii),

(2.4) ϕ(t · e)� ε0 · e, ∀ t ∈ (0, δ2).

Consequently, according to (c1), (2.3), (2.4)

θ � ϕ(θ) � ϕ(t · e)� ε0 · e� c
thence,

θ � ϕ(θ)� c.

Finally, by using now Lemma 1.3 (viii), we obtain ϕ(θ) = θ, completing
the proof. �

Lemma 2.1 ([9], Rem. 1.4). If c ∈ intK, θ � an and an → θ, then there
exists a positive integer N such that an � c for all n ≥ N .

Notice that the converse assertion from the previous lemma is not gener-
ally true as follows by considering in the Banach space Y := C1R[0, 1] endowed
with ‖x‖ = ‖x‖∞ + ‖x′‖∞, the cone K =

{
x ∈ C1R[0, 1]; x(t) ≥ 0, ∀ t ∈ [0, 1]

}
and the sequence xn(t) := tn

n ∈ K.

Proposition 2.3. Let us assume that ϕ : K → K verifies (c1) from
Definition 2.1. If anyone of the following assertions occurs

(α) ϕ satisfies a right continuity condition, i.e.

(2.5) lim
t↘t0

ϕ(t · e) = ϕ(t0 · e);

or
(β) ϕ satisfies, in addition, (c2) and the following subadditivity condition

(2.6) ϕ(t1 · e+ t2 · e) � ϕ(t1 · e) + ϕ(t2 · e), ∀ t1, t2 > 0,

then ϕ satisfies (c3).
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Proof. (α) We proceed by reductio ad absurdum. Suppose that there are
t0 > 0 and ε0 > 0 such that for each n = 1, 2, . . . , one can find tn ↘ t0 with
ϕ(tn · e) − ϕ(t0 · e) �/ ε0 · e. At the same time, by (2.5) and the preceding
lemma, putting c = 1

2 ε0 · e ∈ intK, there is a natural number N such that

ϕ(tn · e)− ϕ(t0 · e)�
1

2
· ε0 · e.

From Remark 1.1(2), we deduce 1
2 ε0 · e�/ ε0 · e. This is a contradiction.

(β) Let t0 > 0 and ε > 0 be arbitrary chosen. By the same argument
as in the proof of the preceding proposition, one can find δ > 0 such that
ϕ(t · e)� ε · e, for all t ∈ (0, δ). By hypothesis, one has

ϕ(t · e)− ϕ(t0 · e) � ϕ(t · e− t0 · e) + ϕ(t0 · e)− ϕ(t0 · e) =

ϕ
(
(t− t0) · e

)
� ε · e, ∀ t ∈ (t0, t0 + δ). �

Corollary 2.1. If ϕ satisfies (2.6), then then map ψ defined in (2.1) is
subadditive, that is ψ(t1 + t2) ≤ ψ(t1) + ψ(t2), for all t1, t2 > 0.

Proof. Let be t1, t2 > 0. Then, using Lemma 1.3 (iv), (vii), we get

ψ(t1 + t2) = ξe[ϕ(t1 · e+ t2 · e)] ≤

≤ ξe[ϕ(t1 · e) + ϕ(t2 · e)] ≤ ξe(ϕ(t1 · e)) + ξe(ϕ(t2 · e)) = ψ(t1) + ψ(t2). �

Definition 2.2. A function ψ : R+ → R+ is said to be a (scalar) comparison
function provided that the following two assertions hold

(s1) 0 ≤ t1 ≤ t2 implies ψ(t1) ≤ ψ(t2);
(s2) ψn(t)→ 0 for all t > 0.

The most important (scalar) comparison function is ψ : R+ → R+,
ψ(t) = ct, where 0 < c < 1.

The following theorem gives a crucial result for our work.

Theorem 2.1 ([8]). Let (X,d) a complete metric space and f : X → X
be a ψ − contraction, i.e. ψ is a (scalar) comparison function and

d
(
f(x), f(y)

)
≤ ψ

(
d(x, y)

)
, for all x, y ∈ X.

Then f has a unique fixed point x∗. Further, for each x∈X, fn(x) −→
n

x∗.

Theorem 2.2. If ϕ : K → K is a vector comparison operator, then ψ
defined via (2.1) is a scalar comparison function.

Proof. The assertion (s1) comes obviously from (c1) and Lemma 1.3 (iv).

We divide the proof of (s2) into two steps.
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First step: we establish that ψ is right continuous at any t0 > 0. For this
purpose, take some t0 > 0 and let be ε > 0. By (c3), there is δ > 0 such that

ψ(t)− ψ(t0) = ξe
(
ϕ(t · e))− ξe

(
ϕ(t0 · e)

)
≤

ξe
(
ϕ(t · e)− ϕ(t0 · e)

)
< ξe(ε · e) = ε, ∀ t ∈ (t0, t0 + δ),

where, in the first inequality we have used Lemma 1.3 (vii) and in the second
one, the axiom (c3).

Second step: let be t > 0. Using Proposition 2.1(i) and (s1), we deduce
that 0 ≤ ψn+1(t) ≤ ψn(t) ≤ t, for any n ≥ 1. So there is x = lim

n
ψn(t) ≥ 0.

If x > 0 then ψ(x) < x. On the other hand, from the right continuity of ψ at
x, one obtain x ≤ ψ(ψn(t))→ ψ(x). Thus, x ≤ ψ(x) which is a contradiction.
Hence, x = 0.

Consequently, ψ is a scalar comparison function. �

Theorem 2.3. Let us consider a TVS-cone metric space (X, ρ) and an
operator T : X → X. Suppose that ϕ : K → K is a vector comparison operator
such that

ρ
(
T (x), T (y)

)
� ϕ

(
ρ(x, y)

)
, for all x, y ∈ X.

Then

dρ
(
T (x), T (y)

)
≤ ψ

(
dρ(x, y)

)
, for all x, y ∈ X,

ψ being defined in (2.1).
Further, whenever (X, ρ) is TVS-cone complete, T has a unique fixed

point x∗. Moreover, for each x ∈ X, the iterative sequence Tn(x) TVS-cone
converges to x∗.

Proof. Notice that, given z ∈ Y , by (1.1), there is a sequence of real
numbers (rn)n which converges to ξe(z) such that z ∈ rn · e − K. K being
closed, one deduce ξe(z) · e− z ∈ K, that is z � ξe(z) · e.

Let x, y ∈ X. Taking z = ρ(x, y), we obtain ρ(x, y) � ξe
(
ρ(x, y)

)
· e.

Thereby,

dρ
(
T (x), T (y)

)
= ξe

(
ρ(T (x), T (y))

)
≤ ξe

(
ϕ(ρ(x, y))

)
≤ ξe

(
ϕ
(
ξe(ρ(x, y)) · e

))
= ξe ◦ ϕ

(
dρ(x, y) · e

)
= ψ

(
dρ(x, y)

)
.

This means that T is a scalar ψ-contraction in the metric space (X,dρ).
Let suppose now that (X, ρ) is a TVS-cone complete metric space. Then,

in view of Theorem 1.1, the metric space (X,dρ) is also complete, hence, by
Matkowski’s Theorem (Theorem 2.1), there is a unique x∗ ∈ X such that
T (x∗) = x∗ and, more, if x ∈ X, that Tn(x) −→

n
x∗ (with respect to dρ).

It remains to prove that
(
Tn(x)

)
n

TVS-cone converges to x∗. For this
purpose, choose c ∈ intK. We consider (2.3) from the first part of the proof of
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Proposition 2.2. Thus, there exists η > 0 such that ε · e� c for any ε ∈ (0, η).
For such an ε, there is a natural number N such that

dρ(T
n(x), x∗) = ξe

(
ρ(Tn(x), x∗)

)
< ε, ∀ n ≥ N.

Lemma 1.3 (ii) implies ρ(Tn(x), x∗) � ε · e � c, for all n ≥ N , as
required. �

Remark 2.1. If ϕ(k) = λ · k, λ ∈ [0, 1), then we obtain Theorem 2.3 of
W.S. Du [4].

Remark 2.2. Let (X, p) a cone metric space. When ϕ(k) = λ·k, λ ∈ [0, 1),
then one obtain the results of L.G. Huang and Zhang Xian [6].

In what follows, we give some examples of vector comparison operators.

Example 2.1. If K is an arbitrary cone in a Banach space E and λ ∈ (0, 1),
then ϕ : K → K defined by ϕ(k) = λk is a vector comparison operator.

Example 2.2. We consider the Euclidian space E = R2, K =
{

(x, y) |
x, y ≥ 0

}
and ψ1, ψ2 : [0,∞) → [0,∞) two arbitrary scalar continuous com-

parison mappings, e.g. ψ1, ψ2 may have one of the forms t 7→ t

t+ 1
, t 7→

αt

αt+ α+ 1
, α > 0, t 7→ ln(t + 1) and so on. Then ϕ : K → K, defined by

ϕ(x, y) =
(
ψ1(x), ψ2(y)

)
is a vector comparison operator.

Proof. The conditions (c1), (c2) are simple to check and (c3) follows im-
mediately from Proposition 2.3 (α). �

Example 2.3. Let Y := CR[0, 1] be the Banach space of continuous real
valued functions on the unit interval [0, 1] endowed with the uniform metric
and set K :=

{
x ∈ CR[0, 1]; x ≥ 0

}
. Then K is solid cone in Y and ϕ : K → K

defined by ϕ(x) = ln(x+ 1) is a vector comparison operator, for any choice of
e ∈ intK.

Proof. Clearly K is solid cone. Next, it is also easy to check that ϕ obeys
the axioms (c1), (c2) from Definition 2.1. To establish (c3) we show that ϕ
satisfies the condition (2.6) and next we apply Proposition 2.3 (β).

So, choose e ∈ intK and t1, t2 > 0. Firstly, we observe that, for any
τ ∈ [0, 1], one has

t1 · e(τ) + t2 · e(τ) + 1 ≤ (t1 · e(τ) + 1
)(
t2 · e(τ) + 1

)
.

Thereby,

ϕ(t1 · e+ t2 · e) � ϕ(t1 · e) + ϕ(t2 · e). �
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APPLICATION

In the sequel we investigate the (countable) iterated function systems on a
cone metric space consisting of ϕ-contractions, where ϕ is a vector comparison
operator. We shall show that such a systems of functions has an attractor.

Let us consider a solid cone K in a locally convex Hausdorff space and
(X, ρ) a TVS-cone metric space. For some fixed e ∈ intK, we also consider the
metric space (X,dρ) defined above.

For each c ∈ intK and x ∈ X let us define the ρ-open ball with center at
x and radius c as follows

Bρ(x, c) = {y ∈ X : ρ(x, y)� c}.

We further denote, for some ε > 0, by Bdρ(x, ε) the open ball centered at x
with radius ε in metric space (X,dρ).

The topology on X induced by the cone metric ρ is given by5

τρ =
{
∅} ∪ {D ⊂ X : ∀x ∈ D, ∃ c ∈ K such that Bρ(x, c) ⊂ D

}
,

while the metric topology generated by dρ will be denoted by τdρ .

Proposition 2.4. One has τρ = τdρ.

Proof. To establish the equality from the statement it is enough to prove
that, for every x ∈ X, any ρ-open ball centered at x include a dρ-open ball
with center at x and conversely.

To this end, let us take firstly c ∈ intK and x ∈ X. We prove that there
is ε0 > 0 such that Bdρ(x, ε0) ⊂ Bρ(x, c). Arguing by contradiction we assume
that, for any ε > 0, one can find yε ∈ Bdρ(x, ε) such that yε /∈ Bρ(x, c). So, for
each n = 1, 2, . . . , there is yn ∈ Bdρ(x,

1
n),

(2.7) yn /∈ Bρ(x, c).

Since dρ(x, yn) < 1
n , according to Lemma 1.3 (ii), one obtains

ρ(x, yn)� 1

n
· e, for all n ≥ 1.

By using the same argument as in the proof of Proposition 2.2 (2.3), we
deduce that there is n0 ∈ N such that 1

n · e � c, for any n ≥ n0. Thus,
ρ(x, yn)� c, for every n ≥ n0, contradicting (2.7).

In order to continue we shall show that, for a given x ∈ X and ε > 0,
there exists c ∈ intK such that Bρ(x, c) ⊂ Bdρ(x, ε). Thus, we put c = ε · e
and choose y ∈ Bρ(x, c), that is ρ(x, y)� ε · e. Lemma 1.3 (v) implies that

dρ(x, y) = ξe
(
ρ(x, y)

)
< ξe(ε · e) = ε.

5[9, 2.2.]
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Hence, y ∈ Bdρ(x, ε).

Accordingly, the two topologies coincide. �

In the sequel we briefly recall some basic facts6 concerning the theory of
Iterated Function Systems (abbreviated IFS) and of Countable Iterated Func-
tion Systems (CIFS).

Let us denote by K(X) the collection of all nonempty compact sets of
a complete metric space (X,d). We equip K(X) with the Hausdorff-Pompeiu
metric dH . This new metric space is complete (resp. compact) provided that
(X,d) is complete (compact). An iterated function system (IFS) consists of a
finite set of contraction mappings ωn : X → X, n = 1, 2, . . . , N . We define the
Hutchinson operator S : K(X) → K(X), S(B) =

⋃
1≤n≤N

ωn(B). It is known

that S is a contraction map. By Banach’s contraction principle, it follows that
there exists a unique A ∈ K(X) such that S(A) = A, named the attractor of
IFS (ωn)Nn=1.

Analogously, if (X,d) is compact, then a sequence (ωn)n≥1 of contraction
maps on X into itself having the supremum of its ratios less than 1 is called
a countable iterated function System (CIFS). The Hutchinson operator will be
in this case S(B) =

⋃
n≥1

ωn(B) and its unique set ”fixed point” is called the

attractor of the considered CIFS.

In both IFS and CIFS cases, the attractorA is approximated in
(
K(X),dH

)
by
(
Sp(B)

)
p
, for any B ∈ K(X), where Sp means p-time composition of S.

The following theorems are extensions of a classical results proved in the
case when ωn are ϕn-contractions instead of contractions (ϕn being a (scalar)
comparison function).

Theorem 2.4 ([11], Th. 4.1). Let us suppose that (X,d) is a complete
metric space and, for n = 1, 2, . . . , N , ωn is a ϕn-contraction. Then IFS
(ωn)Nn=1 has an attractor A ∈ K(X). Furthermore, Sp(B) →

p
A, for all B ∈

K(X).

Theorem 2.5 ([11], Th. 4.6.). Assume that (X,d) is a compact metric
space and, for every n ≥ 1, ωn is a ϕn-contraction, where (ϕn)n≥1 are com-
parison functions. If, besides, sup

n≥1
ϕn(t) < t for all t > 0, then the CIFS (ωn)n

has an attractor A ∈ K(X) which is successively approximated by
(
Sp(B)

)
p
,

for any B ∈ K(X).

6More details about this topics can be found in: J. Hutchinson, Fractals and self-similarity,
Indiana Univ. Math. J. 30 (1981), 713–747 and, respectively, N.A. Secelean, Countable Iter-
ated Function Systems, Far East J. Dyn. Syst. 3(2) (2001), 149–167.
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As an application of our main results, we now give a generalization of IFS
considering the mappings ωn on some TVS-cone metric space.

Theorem 2.6. For n = 1, 2, . . . , N let ϕn : K → K be some vector
comparison operators and ωn : X → X be such that

ρ
(
ωn(x), ωn(y)

)
� ϕn

(
ρ(x, y)

)
, for all x, y ∈ X.

If (X, ρ) is a complete TVS-cone metric space, then there is a unique
nonempty compact set A ⊂ X such that A =

⋃
1≤n≤N

ωn(A). Furthermore, for

every compact ∅ 6= B ⊂ X, Sp(B) →
p
A the convergence being considered with

respect to the Hausdorff-Pompeiu metric defined by means of a certain metric
on X.

Proof. Proposition 2.4 assures that a set is compact with respect to τρ if
and only if it is compact in the topology τdρ . According to Theorem 1.1, we
infer that the metric space (X,dρ) is complete.

Next, from Theorem 2.3 one deduces that each ωn is a ψn-contraction in
the complete metric space (X,dρ), where ψn is defined in (2.1) and represents
a scalar comparison mapping as it follows from Theorem 2.2. The conclusion
now comes by applying Theorem 2.4. �

Theorem 2.7. We assume that (X, ρ) is a compact TVS-cone metric
space and, for each n ≥ 1, ωn : X → X is such that

ρ
(
ωn(x), ωn(y)

)
� ϕ

(
ρ(x, y)

)
, for all x, y ∈ X.

Then there exists a unique nonempty compact set A ⊂ X such that
A =

⋃
n≥1

ωn(A). Furthermore, for every compact ∅ 6= B ⊂ X, Sp(B) →
p
A

with respect to the Hausdorff-Pompeiu metric defined by means of a certain
metric on X.

Proof. We use the same argument as in the proof of the previous theorem.
Thus, any compact set of (X, ρ) is also compact in (X,dρ) and conversely. So,
the metric space (X,dρ) is compact too.

Next, all mappings ωn (n ≥ 1) defined in (2.1), are ψ-contractions in
(X,dρ). The conclusion now follows from Theorem 2.5. �
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